
www.manaraa.com

Consensus in Asynchronous Distributed Systems
A. Coccoli*, A. Bondavalli**, L.Simoncini*

*University of Pisa, Inform. Eng. Dep., via Diotisalvi 2, I-56126, Pisa, Italy
**CNUCE-CNR, via Santa Maria 26, I-56126, Pisa, Italy
e-mail: A.Coccoli@guest.cnuce.cnr.it, {A.Bondavalli,

L.Simoncini}@cnuce.cnr.it

ABSTRACT
The distributed consensus problem arises when several

processes need to reach a common decision despite fail-
ures. The importance of this problem is due to its om-
nipresence in distributed computation: we need consen-
sus to implement reliable communications, atomic
commitment, consistency checks, resources allocations
etc. The solvability of this problem is strictly related to
the nature of the system it is conceived in. When an
asynchronous system is considered, a research result
states the impossibility of deterministically reaching
consensus when even one single fault occurs. In this
paper we will focus our attention on the models pro-
posed to overcome this result and the research originated
from them.

Key-words: Fault-tolerance, distributed systems,
distributed consensus, failure detectors, partial syn-
chrony, quasi-synchronous systems, timed asynchronous
systems.

1. INTRODUCTION
Information sharing, availability (even if some com-

ponents are not properly working) and, above all, partial
mode failure semantic are some of the many advantages
offered by the distributed system model. One of the
drawbacks is represented by the need for complex tech-
niques to manage redundancy and to ensure consistency
of the state. Fundamental in this sense is the role of the
consensus paradigm.

The problem of consensus arises each time several
processors (or processes) have to reach a common deci-
sion, as a function of their initial inputs, despite fail-
ures. The importance of this problem is related to its
diffused presence in the distributed systems model: we
need consensus to implement reliable communications,
atomic commitment, consistency checks, resources
allocations etc. From a theoretical point of view, its
importance is related to its equivalence with other prob-
lems like membership or atomic broadcast. This can
easily explain the central role it played in the study of
fault-tolerant distributed computing (Turek and Shasha,
1992, Barborak et al. 1993) .

The solutions of the consensus problem are strictly
related to the nature of the system it is considered in. If
it is possible to define the temporal properties of all the
events of the system (i.e. if the system is synchronous),
there is a deterministic solution for the consensus prob-
lem. If it is not possible to make any temporal assump-
tion (the system is asynchronous), then the impossibil-
ity to deterministically distinguish a slow process from
a stopped (crashed) one makes any solution for this
model to be stated in probabilistic terms.

The asynchronous system model offers several advan-
tages in terms of portability and generality of its appli-
cations, but it does not allow to provide any useful
result. The synchronous model can not be implemented
in practice, because it is a theoretical abstraction. For
these reasons the research tried (and is still trying) to
define system models with intermediate degrees of syn-
chrony.

Among the most interesting extensions of the asyn-
chronous model we will focus our attention on the
asynchronous with failure detectors (Chandra and Toueg,
1996), the partially synchronous (Dwork et al. 1988),
the quasi-synchronous (Verissimo and Almeida, 1995),
and the timed asynchronous models (Cristian and Fetzer,
1998).

The failure detector model is based on a distributed
oracle that gives (possibly incorrect) hints about the
behaviour of the component of the system so to help to
achieve consensus. The partial synchronous system
model relaxes the requisites of synchrony for processors
and/or for communications considering the cases in
which the bounds on messages deliveries or on the clock
drift of the processors exist but are unknown or they are
known but hold after an unknown time. In the quasi-
synchronous model the properties that define a synchro-
nous system are supposed to have a probability ≠ 0 not
to hold.

The consideration that existing fault-tolerant services
for asynchronous distributed systems are timed is at the
basis of the timed asynchronous model definition. This
model is less general than the asynchronous one (it
assumes, for example, that all the processes have access
to local hardware clocks that run within a linear enve-
lope of real-time) but it is not a practical restriction if
we consider the high standards of quality offered by the
current technology.

The rest of this paper is organised as follow: after a
formal definition of synchronous and asynchronous
systems and a classification of failure types (section 2),
section 3 will define the consensus problem and its
correlation with other important problems in distributed
systems and reports the Fischer, Lynch and Paterson
impossibility result for asynchronous systems, we will
introduce the above mentioned models proposed to over-
come it. We will describe the failure detectors model and
the most important research results originated from a
seminal paper of Chandra and Toueg (1996) in section 4,
the partially synchronous in section 5, the quasi-
synchronous in section 6, and the timed asynchronous
system model in section 7. Section 8 will conclude this
paper including remarks on the models considered and
their comparison.

www.manaraa.com

2. MODEL CLASSIFICATION
Distributed system models can be classified according

to what they assume about synchrony, failure model,
and network topology.

Synchronous and asynchronous systems
We say a system is synchronous when the following

properties hold:
1. There is a known upper bound on the message deliv-

ery delays;
2. There is a known upper bound on the processing

speeds;
3. There is a known upper bound on local clock rate

drifts.
In this kind of systems, it is possible to implement

failure detection mechanisms, e.g. using some time-
outs, and to achieve high degrees of reliability. The
drawback is represented by the difficulty of ensuring
these properties in a large-scale system and for a long
time.

We say a system is asynchronous (or time-free, if we
adopt the definition given in (Cristian and Fetzer, 1998))
when there is no chance to make any temporal assump-
tion (the previous mentioned bounds do not exist or are
unknown). The interest towards this model can be ex-
plained because of the high portability, robustness and
generality of an application suited for it, and if we con-
sider as cause of asynchrony a variable or an unexpected
workload then the limitation of applicability of the
synchronous model emerges. These two models repre-
sent the extremes of a spectrum of possibilities in which
we can insert all the currently available models for the
implementation of distributed applications.

Failure models
A process or a communication component is said to

be correct if it behaves according to an agreed specifica-
tion. If it is not the case, a failure is said to occur and
the processor (or the communication component) is said
to be faulty. A protocol is called m-resilient if it oper-
ates correctly despite up to m failures occurring during
execution.

There are several widely used models of process fail-
ure. They can be classified in terms of ‘severity’
(Hadzilacos and Toueg, 1993). One model is less severe
than another one if the faulty behaviour allowed by the
former is a proper subset of that allowed by the latter.
According to such a classification the first one is the
fail-silent or crash failure model: in this model a process
fails by crashing when it stops its computation and
sending any message. A more severe type of failure is
the omission failure model in which some messages
from faulty processes may not reach their destinations.
Then we have the "by value" failure model characterised
by the transmission of a message different from the
specified one, and, in the end, the arbitrary (or Byzan-
tine) failure model, typical of a processor exhibiting an
absolutely arbitrary behaviour (sending, for example,
wrong and conflicting messages, or arbitrarily changing
its state). The possibility to have an authentication
mechanism (unforgeable signatures for authenticating
messages like error detecting codes (Peterson and
Weldon, 1972)) permits to distinguish arbitrary failures
from authenticated byzantine failures.

When a precise temporal grid is available another fail-
ure model is introduced: the timing (or performance)
failure, that is, missing the temporal bounds imposed
either on execution speeds, on clock drift or on message
delivery (we can distinguish between early or late timing
failures according to the way these bounds are not re-
spected).

By assuming the existence of a given failure model,
we define some “boundaries” on the system behaviour.
The validity of every assumption can be quantified by an
associated hypothesis coverage (Powell, 1992). For
example, if some error detection codes are used to
authenticate messages, we can assume that no corruption
of data occurs during a message transmission (a detected
corrupted message can be discarded and considered as
never received). The dependability estimation of applica-
tions based on this assumption has to take into account
the coverage of the hypothesis made (i.e. the probability
of the occurrence of a non-detectable error).

Network topology
Different assumptions can be made on the network

topology: it can be either fully or partially connected, it
can have point-to-point links or broadcast capabilities,
the delivery of messages can have an arbitrary order or a
FIFO order.

3. THE CONSENSUS PROBLEM
The consensus problem arises each time several proc-

esses have to reach a common decision (depending on
their initial inputs) despite failures (Fischer et al, 1985).

Let's consider a system of n (n ≥ 2) processes that
communicate via messages. When a consensus is
needed, each process proposes its value and the correct
processes, following a deterministic protocol involving
the receipt and sending of messages, have to irreversibly
decide on a common value among the proposed ones.

In order to solve the consensus problem the protocol
has to satisfy the following safety and progress proper-
ties:
Termination: every correct process eventually decides

some value (progress);
Agreement: No two correct processes decide differently

(safety);
Uniform integrity: every process decides at most

once (safety);
Uniform validity: if a process decides v, then v was

proposed by some process (safety).
Different forms of Consensus can be obtained modify-

ing the above properties. A stronger form of Consensus
can be defined imposing the Uniform Agreement
property, that is assuming that no two processes (correct
or not) decide differently (Neiger and Toueg, 1990). This
is the so-called Uniform Consensus Problem.

In an asynchronous system the progress property re-
quires the eventual reaching of consensus (liveness
property), while in a synchronous system this property
requires the consensus to be reached in a bounded time
(timeliness property).

The concept of consensus as a support for the consis-
tency of correct processes is at the basis of the imple-

www.manaraa.com

mentation of responsive1 systems, that combine fault-
tolerant systems requirements with real-time systems
ones (Malek, 1995). Another fundamental problem of
computing systems, the System Diagnosis problem is
closely related to Consensus: they both require the cor-
rect processes population to be handled in order to be-
have in a specified and consistent way (the former using
a diagnosis mechanism, the latter masking the faulty
processes) (Barborak et al, 1993). The generality of
consensus can be made evident by its close relation
(Fischer, 1983) with two other problems: the Byzantine
Generals (Dolev, 1982; Lamport et al, 1982) and the
Interactive Consistency problem (Fischer and Lynch,
1982). In the former, a transmitter process sends an
initial value to the other processes, the receivers, which
must agree on the value of the transmitter, in the latter,
each process sends a private value to every other process,
and then each correct process must infer a vector on
values with an element for each of the processes (includ-
ing itself). The equivalence with the Atomic Broadcast
problem is another evidence of the importance of the
consensus problem. Formally, the atomic broadcast is a
broadcast that satisfies the following conditions
(Hadzilacos and Toueg, 1993):
1. Validity: if a correct process broadcasts a message

m, then all correct processes eventually deliver m
(progress);

2. Agreement: if a correct process delivers a message
m, then all correct processes eventually deliver m
(progress);

3. Uniform integrity: for any message m, every
correct process delivers m at most once, and only if
m was previously broadcast by some process (safety).

4. Total order: if correct processes p and q both de-
liver messages m and m’, then p delivers m before m’
iff q delivers m before m’

A demonstration of the equivalence between the prob-
lem of Atomic Broadcast and the Consensus can be
found in (Chandra and Toueg, 1996). Equivalence means
that any solution to one problem can be used to solve
the other problem and vice-versa (this is a process of
reduction of one problem to the other). The specifica-
tions and some implementations of other broadcast
model can be found in (Hadzilacos and Toueg, 1993).
The close relationship between solutions to agreement
problems and broadcast capabilities can be found in
applications like the Advanced Automation System
(Cristian et al., 1990), Amoeba (Tanenbaum et al.,
1990), Delta-4 (Powell, 1991), Horus (van Renesse et
al., 1996), Newtop (Macedo et al., 1993), Isis (Birman
and van Renesse, 1994), Transis (Amir et al., 1992).

The consensus problem is important because of a fun-
damental theoretical result based on the analysis of fault-
tolerant distributed computation: the impossibility
theorem of Fischer, Lynch and Paterson (FLP) (Fischer
et al., 1985). This theorem states that no deterministic
solution exists for the consensus problem in an asyn-
chronous system where even a single crash failure may
occur. This result holds also in the presence of a com-

1Responsiveness is defined as the probability of a

timely and correct execution under a given fault and load
hypothesis.

pletely connected and reliable communication network
where a sent message is eventually received. The core of
this result is based on the intrinsic impossibility to
distinguish, in an asynchronous system, a failed
(crashed) process from a merely slow one. The demon-
stration is obtained by contradiction assuming that such
a protocol exists and showing the existence of at least
one initial configuration from which an infinite compu-
tation is not enough to make the protocol able to choose
one value (contradicting its assumed correctness). The
theoretical and practical implications of this result are
very important. Whereas the synchronous model is a
mere theoretical abstraction, violated by real systems,
the FLP impossibility result tells that the asynchronous
model is too general and does not allow to provide any
useful property or result. This has led several researchers
to consider intermediate models between these two ex-
tremes, either weakening the assumptions of the syn-
chronous model, or constraining the asynchronous one.
In the following sections we will see the most interest-
ing models proposed in this direction.

5. FAILURE DETECTORS
In order to overcome Fisher et al's result, Chandra and

Toueg proposed to extend the asynchronous system
model introducing the concept of Unreliable Failure
Detector (Chandra and Toueg, 1996). In their work, the
system consists of a set of n processes, every pair of
processes is connected by a reliable communication
channel, and the processes can fail by crashing. A failure
detector can be conceived as a distributed oracle that
gives (possibly incorrect) hints about which process
may have crashed so far. It is constituted by several
modules local to each process periodically consulted by
the corresponding process. Each module produces a list
of processes suspected to be crashed, and this informa-
tion is used by processes in order to achieve the consen-
sus although it is important to note that a suspected
process continues to behave according to its specifica-
tion. The modules are intrinsically unreliable: they can
make mistakes, so the lists dynamically change during
the computation (and it is possible for two or more lists
to be different at the same time).

The failure detectors can be classified according to their
accuracy and completeness properties. The accuracy
property restricts the mistakes a failure detector can
make, while completeness represents the capacity of
suspecting an actually crashed process. More precisely,
we can define two completeness properties:
- Strong Completeness: eventually every crashed

process is permanently suspected by every correct
process;

- Weak Completeness: eventually every crashed
process is permanently suspected by some correct
process;

and four accuracy properties:
- Strong Accuracy: No process is suspected before it

crashes;
- Weak Accuracy: some correct process is never

suspected;

www.manaraa.com

- Eventual Strong Accuracy: there is a time after
which correct processes are not suspected by any cor-
rect process;

- Eventual Weak Accuracy: there is a time after
which some correct process is never suspected by any
correct process;

Combining the above mentioned properties we obtain
the eight classes of failure detectors depicted in table 1
(Chandra and Toueg, 1996).

The classes of failure detectors are not independent:
using a reduction algorithm (roughly speaking: an emu-
lator) it is possible to demonstrate the existence of
equivalence relations. More precisely, a reduction algo-
rithm TD→D', is an algorithm that permits to solve any

problem that can be solved with D', using D in its
place. If an algorithm TD→D' exists, we write D≥D'

and say that D' is reducibile to D (or that D' is weaker
than D). The reducibility attribute is a transitive rela-
tion, and if D≥D' and D'≥D we say that D and D' are
equivalent. If C≥C' and C is not equivalent to C', then
C' is said to be strictly weaker than C (C>C’). Chandra
and Toueg (1996) showed the existence of reduction
algorithms that transform any given failure detector that
satisfies Weak Completeness, into a failure detector that
satisfies Strong Completeness. These relations, as well
as other reducibility relations between the classes of
failure detectors, are described in figure 1.

Chandra and Toueg (1996) showed the solvability of
the consensus problem in an asynchronous system
where a failure detector is given: if eventual accuracy is
provided ◊P, ◊Q, ◊S, ◊W) a majority of correct proc-
esses is needed; if we provide perpetual accuracy (classes
P, Q, S, W) then there are no limits on the tolerated
failures. In the same work two algorithms for consensus
are described: one based on a Strong Failure Detector and
the other on an Eventually Strong Failure Detector. An
interesting result deriving from the equivalence relations
between the failure detectors classes is the solvability of
consensus with an Eventually Weak failure detector
(with a majority of correct processes) (Chandra et al.,
1996). This result is important because, being the weak-
est failure detector that can be used to solve consensus,
it states necessary and sufficient conditions for the solu-
tion of the problem.

Chandra and Toueg's work is essentially based on ab-
stract definitions of the model of failure detectors,
though this work triggered a lot of other studies: in
(Aguilera and Toueg, 1996) an integration with a non-
deterministic model of the system is proposed, while in
(Dolev et al., 1997) the attention is focused on systems
with omission failures. Guerraoui and Schiper (1996)
redefine the failure detector formalism for systems where
network partitions can occur. The recovery of crashed
processes is considered in (Hurfin et al, 1997; Oliveira et
al., 1997; Aguilera et al., 1998). Lo and Hadzilacos
(1994) considered the use of failure detectors in shared-
memory systems.

6. PARTIAL SYNCHRONOUS SYSTEM.
Analysing the FLP impossibility result, there appears

to be three different types of asynchrony:

Process asynchrony: a process may "go to sleep" for
arbitrarily long finite amounts of time while other
processes continue to run;

Communication asynchrony: no a priori bounds
exist on message delivery time;

Message order asynchrony: messages can be deliv-
ered in a different order from the one in which they
were sent.

Investigating on the influences of the different types of
asynchrony, Dolev et al. (1987) found that it is not
necessary to have all the above types of asynchrony to
obtain the impossibility result. More precisely, they
considered five critical parameters and the way their
attributes contribute to solve the consensus. They con-
sidered the synchrony/asynchrony of processors (1) and
of communications (2), existence/absence of a corre-
spondence on the order messages are sent and received
(3), the transmission mechanism (point to point or
broadcast) (4), and the possibility/impossibility to
atomically execute send and receive (5). Combining all
these five parameters, a space of 32 possible system
models can be obtained. Between them, four cases have
been identified in which n-crash resilient protocols exist.
These cases are necessary in the sense that it is enough
to change one parameter from favourable to unfavourable
to lose the possibility of having a m-crash resilient
protocol (m being 1 or 2). These minimal cases are:
1. synchronous processors and synchronous communica-

tion;
2. synchronous processors and synchronous message

order;
3. broadcast transmission and synchronous message

order;
4. synchronous communication, broadcast transmission

and atomic send/receive.
In the case of bounded message delivery time, atomic

send/receive and point-to-point transmission, we can get
1-resiliency but not 2: in a critical step, a process p
sends a message to another process q, in order to hide
this event it is necessary and sufficient that both p and q
fail. Figure 2 shows the maximum resiliency for each
setting of the five parameters (empty table entries repre-
sent the unsolvability of consensus even in the presence
of one crash failure).

All the above considerations constituted the basis for
the definition of the partially synchronous system
model (Dwork et al., 1988). This model is originated
relaxing the requisite of synchrony for processors and/or
for communications. According to this work, calling ∆
and Φ the upper bounds on message transmission and on
relative clock speeds of processors respectively, a partial
synchrony can be caused by two conditions:

-the bounds exists but are not known;
-the bounds are known, but they hold after
some unknown time.

In the former case, the system is de facto synchronous,
so the impossibility result does not hold. The problem
is to manage the messages exchange without the knowl-
edge of the real values of ∆ and Φ: using non correct
values for these bounds will obviously affect the proto-
col correctness or performance. In the latter case an
instant of time, called Global Stabilisation Time (GST),
is supposed to exist such that the bounds are valid from

www.manaraa.com

GST on. The same situations can be observed consider-
ing only one bound at a time. For these models table 2
shows the maximum resiliency for different forms of
synchrony and types of failures. It is interesting to
observe that the usage of authentication mechanisms
does not improve resiliency of systems with partially
synchronous communications.

7. QUASI-SYNCHRONISM
The respect of all the timing constraints is mandatory

when life-critical applications are considered, however,
there are other real-time applications where, despite the
need for dependability, it is acceptable to eventually
miss some of them (assuming to achieve the most
important ones). This is the consideration at the basis of
the definition of the quasi-synchronous model pro-
posed by Verissimo and Almeida (1996b).

It should be observed that, according to the authors'
approach, the systems in which these applications are
built are not soft real-time in the strict sense of the
word: they are designed on the assumption of a non
negligible probability of timing failures occurrences, for
this reason, adequate timing fault-tolerance measures are
needed.

Using Almeida and Verissimo wording, a system is
synchronous if there are

P1. bounded and known processing speeds;
P2. bounded and known message delivery delays;
P3. bounded and known local clock rate drift;
P4. bounded and known load patterns;
P5. bounded and known difference among local clocks.
A system is quasi-synchronous if
D1. it can be defined by properties Px;
D2. There is at least one bound where there is a known

probability (≠ 0) that the bound assumption does
not hold (this probability is called assumption un-
coverage);

D3. any property can be defined in terms of a series of
pairs (bound, assumption uncoverage).

A Quasi-Synchronous system can be conceived as a
synchronous system in which the absolute bounds on
messages transmission delays, local clock drift rates and
process execution times are so far away from those
observed during the normal operative mode that it is
more convenient to use different values, even if the
coverage of such assumptions is not equal to one
(Powell, 1992). This model allows to catch both the
situation in which the bounds do not exist and that in
which the bounds exist, but some or all of them are too
far from the normal case, so it is preferable to use
shorter artificial bounds, with an uncoverage probability.
In (Almeida and Verissimo, 1998) the integration of a
timing failure detector (implementable using a dedicated
small bandwidth synchronous channel, or using highest
priority messages) with an hierarchical structure for
group management is used to efficiently handle timing
failures and to obtain a real-time group communication
in a Quasi-Synchronous system. A more detailed de-
scription of the above mentioned concepts can be found
in (Almeida and Verissimo, 1995; Almeida and Veris-
simo, 1996b). An interesting application of this archi-
tecture is represented by a distributed and replicated real-

time data-base, where the consistency of replicas has to
be ensured without influencing timeliness and vice-versa
(Almeida and Verissimo, 1996a). The conjunction of a
failure detection service with the communication proto-
cols can be related to the work done by the ISIS group
to solve the consensus problem in asynchronous sys-
tems (Ricciardi and Birman, 1991).

8. TIMED ASYNCHRONOUS SYSTEM
At the basis of the timed asynchronous model defini-

tion there is the consideration that existing fault-tolerant
services for asynchronous distributed systems are timed:
the specification of the services not only describes the
states transitions and the outputs in response to invoca-
tions of operations, but also the time interval within
which these transitions have to complete (Cristian and
Fetzer, 1998).

The timed asynchronous system model is characterised
by a set of assumptions on the behaviour of processes,
of communications and of hardware clocks:
1. all the services are timed (the temporal characteristics

of the events are specified), so it is possible to asso-
ciate some time-outs whose expiration produces a
performance failure

2. communication between processes is obtained via an
unreliable datagram service with omission and/or per-
formance failure semantics;

3. processes have crash/performance failure semantics
(Cristian, 1991);

4. all processes have access to private hardware clocks
that run within a linear envelope of real-time;

5. no bound exists on the rate of communication and
process failures.

As we can see, the timed asynchronous system model
is asynchronous in the sense that it does not require the
existence of upper bounds for message transmissions and
scheduling delays. However, the access to local hardware
clocks and the definition of time-outs allow us to define
the performance failure as that failure which occurs when
an experienced delay is greater than the associated time-
out delay. It could be argued that the timed model is less
general than the asynchronous one, but this is not true
from a practical point of view. In fact, each time an
higher level of abstraction depends on a service, it makes
the service to become "de facto" timed. Also the pres-
ence of clocks is not a practical restriction if we consider
that the currently technology makes available high-
precision quartz clocks. Differently from the asynchro-
nous model, the timed model allows to implement
fundamental services like clock synchronisation, mem-
bership, consensus, election and atomic broadcast
(Cristian, 1989; Cristian and Schmuck, 1995; Fetzer and
Cristian, 1995; Cristian, 1996).

Let's analyse more in detail the model, starting from
the support for the communication.

The datagram service
The following assumptions hold:

- there are no assumptions on the physical network
topology;

- messages are transmitted either via unicast or broad-
cast;

- it univocally identifies every message;

www.manaraa.com

- there is no upper bound on the message transmission
delay;

- it permits the definition of a time-out on the message
transmission (one-way time-out delay δ) whose value
influences the failures rate and, consequently, the sys-
tem stability;

- it transmits the messages with a time proportional to
their dimension;

- it has a crash/omission failure semantics (the possibil-
ity of message corruption is negligible).

The one-way time-out delay associated to the commu-
nication services permits to say that a message is re-
ceived in a timely manner if its transmission delay is
not greater than δ.

The processes
All the processes have access to a private stable stor-

age so it is possible, for them, to be recovered after a
crash occurred. In particular, a process can be in one of
the following three states: up, crashed, and recovering. A
process is in the crashed state when a stops executing its
code and has lost all its previous state. It is in the recov-
ering state when executes its state ‘initialisation code’,
i.e. after its creation, or in the restarting phase after a
crash occurred. When it executes its 'standard' code, it is
in the up state.

The non-crashed processes change their state in corre-
spondence of triggering events like time-outs or message
delivery. The time between the occurrence of an event
and the moment the process finishes the processing of
this event is called process scheduling delay. For each
process p a time-out σ for scheduling delays is given.
When σ expires the process is said to have suffered a
performance failure.

Local Clocks
Processes have access to a local hardware clock whose

drift rate is bounded by a calibration mechanism. The
local clocks are subjected to crashes and this event pro-
duces a crash in the processes that rely on them (the
opposite is not true: a process crash does not affect its
local clock).

The Progress Assumptions
The timed asynchronous system model is extended by

the so-called progress assumptions. In short, the pro-
gress assumptions are introduced to characterise the
synchronous behaviour exhibited by a system, i.e. to
model the additional synchronism into the timed asyn-
chronous system model (e.g. progress assumptions can
be used to characterise the behaviour of distributed sys-
tems based on LANs which alternates between long
stability periods and comparatively short instability
intervals). Progress assumptions can be expressed in the
following way: infinitely often a majority of processes
will be stable for a bounded amount of time. In order to
formally define the progress assumptions we need some
definitions. A process p is timely in an interval [s, t], if
it is non-crashed and it does not suffer any performance
failure in [s, t]. Two processes are connected in [s, t] if
they are timely during [s, t] and each message exchanged
between them in [s, t-δ] is received in a timely manner,
i.e. the message transmission delays of connected proc-
esses are at most δ. A stable majority in an interval [s,
t] is composed by a majority of up, timely and pair-wise
connected processes in [s, t]. A process is majority-

stable when it belongs to a stable majority. A system is
said majority-stable during an interval if there exists a
stable majority during that interval, otherwise it is said
unstable in that interval.

In the specifications of the protocols for timed asyn-
chronous system some stability predicates are defined in
order to verify the favourable conditions of the system
(i.e. its synchronous behaviour). Here we will consider
the always eventually majority-stable predicate:

1. after each unstability period, a system eventually
becomes majority-stable for at least D clock time units,
where D is an a priori given constant;

2. each process always eventually becomes majority-
stable for at least D clock-time units or it crashes.

In (Fetzer and Cristian, 1995), a majority stability
predicate is defined such that, if the system is majority
stable for sufficiently long time, a solution to the leader
election and consensus are deterministically implemen-
table. It should be noted that the termination conditions
for asynchronous systems require an algorithm to com-
plete in a finite number of steps, while for synchronous
systems this condition is time-bounded, i.e. the algo-
rithm has to complete in a bounded amount of time. In
timed asynchronous systems the termination conditions
are conditionally-timed: in an always eventually major-
ity stable system, if a process makes part of a majority
of timely processes in an interval of time, then, each
operation started at the beginning of that interval has to
complete within it. Supposing to have an eventually
majority system, the protocol described in (Fetzer and
Cristian, 1995) solves the consensus problem using a
rotating leadership service which gives each timely
process the chance to be leader for a limited amount of
time before it is demoted and the leadership is passed on
to another process.

In this way, even in the case the leader suffers a crash,
if the system is majority stable, another process can act
as a leader in a bounded amount of time. This protocol
solves the consensus problem despite the failures and
recoveries that may affect the processes that do not
belong to a stable majority. The solvability of the con-
sensus problem in the timed asynchronous system
model is strictly related to the possibility of associating
an information to the time: it allows the timed asyn-
chronous system model to be the support for the defini-
tion of the so called Fail-Awareness, (Fetzer and Cris-
tian, 1996b; Fetzer and Cristian, 1997), that is, a design
concept, based on the translation of performance failures
in exception occurrences, for weakening the specification
of a synchronous service S to a new specification FS, so
that it becomes implementable in timed asynchronous
systems. An interesting application of the timed asyn-
chronous model can be found in (Essame’, 1998; Es-
same’ et al. 1999), where it is applied to the definition
of a protocol (called PADRE) for the management of an
asymmetric duplex redundancy in a fully automated train
control system.

9. A COMPARISON OF MODELS
All the models we considered tried to overcome the

FLP impossibility result strengthening the asynchro-
nous system model, i.e. trying to add a sufficient

www.manaraa.com

amount of "synchrony" to the system in order to allow
the solvability of the consensus problem. Obviously,
there are several differences between all the models,
because the assumptions they rely upon are different.

A first comparison can be made between the partially
synchronous system and the timed asynchronous sys-
tem.

As we saw before, the former model assumes the exis-
tence of a bound on processor speeds and on the clock
drift rate with a coverage equal to 1. On the contrary, the
timed asynchronous system model only assumes a
bound on clock drift rate (with a coverage equal to 1) and
makes no assumptions on load patterns and on messages
transmissions delays. The timed asynchronous system
model has some points in common with the partially
synchronous system model: the Global Stabilisation
Time of the partially synchronous system model re-
minds the concept of stability of the timed asynchronous
system, but, while the Global Stabilisation requires that
the system is not affected by any (timing or crash) fail-
ure after a certain instant, the stability of a timed asyn-
chronous system is valid only for bounded time inter-
vals. Moreover, it is interesting to compare the partial
synchrony system models with the notion of an unreli-
able failure detector. For every partial synchrony model
we considered, it is easy to implement an eventual per-
fect failure detector (a failure detector that satisfies strong
completeness and eventual strong accuracy). In fact one
could implement such a failure detector with an even
weaker model of partial synchrony: one in which the
bounds on message transmission delays and on process
speeds exist, but they are not known and they hold only
after some unknown time. More difficult is to compare
the failure detectors model with the timed asynchronous
system one. In (Fetzer and Cristian, 1996a) the impos-
sibility to implement a perfect failure detector in a timed
asynchronous system has been proved. The main differ-
ence between the two models is in the philosophy of the
design of the system. Failure detectors hide to higher
abstraction levels all the aspects related to the time of
the fault-tolerant distributed computation. This can
constitute a problem if the abstraction levels are more
than two. In such a situation all the time-outs are used
in each level because a level that depend on another one
(Cristian, 1991) has to be able to detect its failures. For
this reason the meaning of time-outs change in corre-
spondence of the levels they are associated to (usually
the higher is the level, the greater is the time-out and the
more severe is its violation). Let's consider now the
differences between the Partial Synchronous and the
Quasi-Synchronous model: in the latter model it is
necessary to define an a priori given bound for message
delay (although the bound does not hold with probability
1), while in the former, this bound is not known or it
holds after an unknown instant. The last comparison is
between the Timed Asynchronous and the Quasi-
Synchronous model. These two models have several
points in common. First of all they are both based on a
careful observation of existing systems. They both are
concerned on the realisation of a support for the devel-
opment of real-time applications on not fully synchro-
nous environments. Moreover, they both allow to build
applications with a fail-safe shutdown. At a first glance,

the degree of synchrony of the Quasi-Synchronous
model seems higher than the degree of synchrony of the
Timed Asynchronous one, but we have to remind how
the latter depends on the definition of the progress as-
sumptions. Though, as stated in (Almeida and Veris-
simo, 1998), “the Quasi-Synchronous model provides
more flexibility for system reconfiguration because,
thanks to the timely control information provided by the
Timing Failure Detector Service, an agreement can be
reached before making a decision about the way that
reconfiguration should be done".

REFERENCES
Aguilera, M. K., et al. (1998). “Failure Detection and

Consensus in the Crash-Recovery Model”. Proc. of 12th
Int. Symp. on Distributed Computing, Andros, Greece.

Aguilera, M. K. and S. Toueg (1996). “Randomiza-
tion and Failure Detection: a Hybrid Approach to Solve
Consensus”. Proc of 10th Int. Workshop on Distr.
Algorithms, Bologna, Italy, pp. 29-39.

Almeida, C. and P. Verissimo (1995). “An Adaptive
Real-Time Group Communication Protocol”. Proc. of
First IEEE Workshop on Factory Communication Sys-
tems, Leysin, Switzerland.

Almeida, C. and P. Verissimo (1996a). “The Quasi-
Synchronous Approach to Distributed Real-Time Data-
Bases”, INESC tech rep RT/02-96. Lisboa, Portugal.

Almeida, C. and P. Verissimo (1996b). “Timing Fail-
ure Detection and Real-time Group Communication in
Quasi-Synchronous Systems”. Proc. of 8th Euromicro
Workshop on Real-Time Systems, L’Aquila, Italy.

Almeida, C. and P. Verissimo (1998). “Using Light-
Weight Groups to handle Timing Failures in Quasi-
Synchronous systems”. Proc. of 19th IEEE Real-Time
System Symposium, Madrid, Spain.

Amir, Y., et al. (1992). “Transis: a Communication
Sub-system for High Availability”. Proc. of 22nd An-
nual Int. Symp. on Fault-Tolerant Computing. pp. 76-
84.

Barborak, M., et al. (1993). “The Consensus Problem
in Fault-Tolerant Computing.” ACM Computing Sur-
veys Vol. 25, pp. 171-220.

Birman, K. P. and R. van Renesse (1994). “Reliable
Distributed Computing with the Isis Toolkit”. IEEE
Computer Society Press.

Chandra, T. et al. (1996). “The Weakest Failure Detec-
tor for Solving Consensus.” Journal of the ACM, Vol.
43, pp. 685-722.

Chandra, T. and S. Toueg (1996). “Unreliable Failure
Detectors for Reliable Distributed Systems.” Journal of
the ACM, Vol. 43(2), pp. 225-267.

Cristian, F. (1989). “Probabilistic Clock Synchronisa-
tion.” Distributed Computing, Vol. 3, pp. 146-158.

Cristian, F. (1991). “Understanding Fault-tolerant Dis-
tributed System.” Comm. of ACM,Vol.34, pp.56-78.

Cristian, F. (1996). “Group, Majority, and Strict
Agreement in Timed Asynchronous Distributed Sys-
tems”. Proc. of 26th Int. Symposium on Fault-Tolerant
Computing, Sendai, Japan.

Cristian, F. et al. (1990). “Faut-Tolerance in the Ad-
vanced Automation System”. Proc of 20th Int. Conf. on
Fault-Tolerant Comp., Newcastle-upon-T.,UK.pp. 6-17.

www.manaraa.com

Cristian, F. and C. Fetzer (1998). “The Timed Asyn-
chronous Distributed System Model”. Proc. of 28th Int.
Symp. On Fault-Tolerant Computing (FTCS-28), Mu-
nich, Germany. pp. 140-149.

Cristian, F. and F. Schmuck (1995). “Agreeing on
Processor-Group Membership in Asynchronous Distrib-
uted Systems”, UCSD technical report.

Dolev, D. (1982). “The Byzantine Generals Strike
Again.” Journal of Algorithms, Vol. 3, pp. 14-30.

Dolev, D., et al. (1987). “On the Minimal Synchro-
nism Needed for Distributed Consensus.” Journal of the
ACM, Vol. 34, pp. 77-97.

Dolev, D. et al. (1997). “Failure Detectors in Omis-
sion Failure Environments”. 16th ACM Symp. on
Principles of Distributed Computing (Short Paper).

Dwork, C., et al. (1988). “Consensus in the Presence
of Partial Synchrony.” J. of ACM, Vol.35,pp. 288-323.

Essame’, D. (1998). “Fault Tolerance in Critical Sys-
tems: Application to Automatic Subway Control”.
Tolouse, Doctoral thesis, LAAS-CNRS, Tolouse.

Essame’, D., et al. (1999). “PADRE: A Protocol for
Asymmetric Duplex Redundancy”. Proc, of 7th Int.
Working Conf. On Dependable Computing for Critical
Applications, San Jose, CA. pp. 213-232.

Fetzer, C. and F. Cristian (1995). “On the Possibility
of Consensus in Asynchronous Systems”. Pacific Rim
Int. Symp. on Fault-tolerant Syst., Newport Beach CA.

Fetzer, C. and F. Cristian (1996a). “Fail-aware Failure
Detectors”. Proc. of 15th Symposium on Reliable Dis-
tributed Systems, Niagara on the Lake, Canada.

Fetzer, C. and F. Cristian (1996b). “Fail-awareness in
Timed Asynchronous Systems”, T.Rep.CS95-45,
UCSD

Fetzer, C. and F. Cristian (1997). “A Fail-aware Data-
gram Service”. 2nd Annual Workshop on Fault-tolerant
Parallel and Distributed Systems, Geneva, Switzerland.

Fischer, M., et al. (1985). “Impossibility of Distrib-
uted Consensus with One Faulty Process.” Journal of
ACM, Vol. 32, pp. 374-382.

Fischer, M. J. (1983). “The Consensus Problem in
Unreliable Distributed Systems (A Brief Survey)”. Inter-
national Conference on Foundations of Computations
Theory. Borgholm, Sweden. pp. 127-140.

Fischer, M. J. and N. A. Lynch (1982). “A Lower
Bound on the Time to Assure Interactive Consistency.”
Information Processing Letters, Vol. 14, pp. 183-186.

Guerraoui, R. and A. Schiper (1996). ““Gamma-
Accurate” Failure Detectors”. Proc. of 10th Intern.
Workshop on Distr. Algorithms, Bologna, Italy. pp.
269-286.

Hadzilacos, V. and S. Toueg (1993). “Fault-tolerant
Broadcasts and Related Problems”. Distributed Systems.
S. J. Mullender. Reading, Addison-Wesley. pp. 97-145.

Hurfin, M., et al. (1997). “Consensus in Asynchro-
nous Systems where Processes can Crash and Recover”,
IRISA Internal report PI-1144.

Lamport, L., et al. (1982). “The Byzantyne Generals
Problem.” ACM Transactions on Programming Lan-
guages and Systems, Vol. 4, pp. 382-401.

Lo, W. K. and V. Hadzilacos (1994). “Using Failure
Detectors to Solve Consensus in Asynchronous Shared-
Memory Systems”. Proc of 8th International Workshop
on Distributed Algorithms. pp. 280-295.

Macedo, R. A., et al. (1993). “Newtop: a Total Order
Multicast Protocol Using Causal Blocks”, BROAD-
CAST Project Technical Report n.10

Malek, M. (1995). “Omniscence, Consensus, Auton-
omy: Three Tempting Roads to Responsiveness”. Proc
of 14th IEEE Symposium on Reliable Distributed Sys-
tems, Bad Neuenahr, Germany. pp. 12-14.

Neiger, G. and S. Toueg (1990). “Automatically In-
creasing the Fault-tolerance of Distributed Algorithms.”
Journal of Algorithms, Vol. 11, pp. 374-419.

Oliveira, R., et al. (1997). “Consensus in the Crash-
Recover Model”, EPFL, Dept. d’Informatique, Tech.
rep. 97-239, Lousanne (Switzerland).

Peterson, W. and E. Weldon (1972). “Error Correction
Codes”. MIT Press, Massachusetts.

Powell, D. (1991). “Delta-4: A Generic Architecture
for Dependable Distributed Computing” New York.

Powell, D. (1992). “Failure Mode Assumptions and
Assumption Coverage”. Proc. of 22nd Int. Conf. on
Fault-Tolerant Computing., Boston, pp. 386-395.

Ricciardi, A. M. and K. P. Birman (1991). “Using
Process Groups to Implement Failure Detection in
Asynchronous Environments”, Tech. Rep., Cornell
University, Dep. of Computer Science.

Tanenbaum, A. S., et al. (1990). “Experiences with
the Amoeba Distributed Operating System.” Communi-
cation of the ACM, Vol. 33, pp. 46-63.

Turek, J. and D. Shasha (1992). “The many Faces of
Consensus in Distributed Systems.” IEEE Computer
Vol. 25, pp. 8-17.

Van Renesse, R., et al. (1996). “Horus: a Flexible
Group Communication System.” Comm. of the ACM,
Vol. 39.

Verissimo, P. and C. Almeida (1995). “Quasi-
Synchronism: a Step Away from the Traditional Fault-
Tolerant Real-Time System Models.” IEEE TCOS
Bulletin Vol. 7, pp. 35-39.

FIGURES AND TABLES

Table 1 - Failure Detectors Classes

Accuracy

C o m -
p l e t e -
n e s s

S t r o n g Weak Eventual

S t r o n g

Eventual

Weak

S t r o n g Perfect
P

Strong
S

Eventually
Perfect ◊P

Eventually
Strong ◊S

Weak Q Weak

W
◊Q Eventually

Weak ◊W

www.manaraa.com

P

Q

W

S

P

Q

S

W

C D: C is strictly weaker than D
C D: C is equivalent to D

Fig. 1 Relations between Failure Detector
classes (Chandra and Toueg, 1996)

Table 2 . Smallest number of processors N min for which a t-resilient Consensus protocol e x i s t s
(Dwork et al. 1988) .

System Model

Failure type
Syn-

chronous
Asyin-

chronous

Partially synchr.
communication and
synchr. processors

Partially synchr.
communication
and processors

Partially synchr. proc-
essors and synchr.
communication

Crash t ∞ 2t + 1 2t + 1 t+1

Omission t ∞ 2t + 1 2t + 1 [2t, 2t + 1]

Byzantine
(with authentication) t ∞ 3t + 1 3t + 1 2t + 1

Byzantine
(without authentication) 3t + 1 ∞ 3t + 1 3t + 1 3t + 1

a) Separated send and receive

Message Order

C
om

m
unication

P
ro

ce
ss

es

Transmission

n

n n

n

n

nn

n

Asynch. Synch.

S
yn

ch
.

A
sy

nc
h.

A
synch.

S
yn

ch
.

A
synch.

Broadcast
point-
to-point

point-
to-point

1

3

2

4

Message Order

C
om

m
unication

P
ro

ce
ss

es

Transmission

n

n n

n

n

nn

n

Asynch. Synch.

S
yn

ch
.

A
sy

nc
h.

A
synch.

S
yn

ch
.

A
synch.

Broadcast
point-
to-point

point-
to-point

n

b) Atomic send and receive

Fig. 2 Maximum crash resiliencies for consensus protocols

