Consensus in Asynchronous Distributed Systems
A. Coccoli*, A. Bondavalli**, L.Simoncini*

*University of Pisa, Inform. Eng. Dep., via Diotisalvi 2, I-56126, Pisa, Italy
*CNUCE-CNR, via Santa Maria 26, 1-56126, Pisa, Italy
e-mail: A.Coccoli@guest.cnuce.cnr.it, {A.Bondavalli,
L.Simoncini}@cnuce.cnr.it

ABSTRACT

The distributed consensus problamiseswhen several
processesieedto reacha commondecisiondespitefail-
ures. The importanceof this problemis dueto its om-
nipresencen distributedcomputation:we needconsen-
sus to implement reliable communications, atomic
commitment, consistencychecks,resourcesallocations
etc. The solvability of thigproblemis strictly relatedto
the nature of the systemit is conceivedin. When an
asynchronoussystem is considered,a researchresult
statesthe impossibility of deterministically reaching
consensusvhen even one single fault occurs. In this
paperwe will focus our attentionon the models pro-
posed to overcome this resaltdthe researctoriginated
from them.

Key-words: Fault-tolerance, distributed systems,
distributed consensus,failure detectors, partial syn-
chrony, quasi-synchronous systertisied asynchronous
systems.

1. INTRODUCTION

Information sharing,availability (evenif some com-
ponents are not properly working) aradhoveall, partial
mode failuresemanticare someof the many advantages
offered by the distributed system model. One of the
drawbackss representedby the needfor complex tech-
niguesto manageredundancyandto ensureconsistency
of the state. Fundamental in this seis¢he role of the
consensus paradigm.

The problem of consensusarises each time several
processorgor processeshaveto reacha common deci-
sion, asa function of their initial inputs, despitefalil-
ures.The importanceof this problemis relatedto its
diffused presencein the distributed systemsmodel: we
needconsensuso implementreliable communications,
atomic commitment, consistency checks, resources
allocationsetc. From a theoreticalpoint of view, its
importance is relatetb its equivalencewith otherprob-
lems like membershipor atomic broadcast.This can
easily explainthe centralrole it playedin the study of
fault-tolerantdistributedcomputing (Turek and Shasha,
1992, Barborak et al. 1993) .

The solutions of the consensugproblem are strictly
related to the naturef the systemit is consideredn. If
it is possible to define theemporalpropertiesof all the
events of the system (i.e. if tystemis synchronous
there is adeterministicsolution for the consensugprob-
lemslf.it-is-not-possible tanakeany-temporalassump-
tion (the systemis asynchronous then the impossibil-
ity to deterministicallydistinguisha slow processfrom
a stoppedi(crashed)one makes any solution for this

The asynchronousystemmodel offers severaladvan-
tages intermsof portability and generalityof its appli-
cations, but it does not allow to provide any useful
result. The synchronousnodel cannot be implemented
in practice,becauset is a theoreticalabstraction.For
thesereasonsthe researchtried (and is still trying) to
define systemmodelswith intermediatedegreesof syn-
chrony.

Among the most interestingextensionsof the asyn-
chronousmodel we will focus our attention on the
asynchronous witfailure detector§Chandraand Toueg,
1996), the partially synchronougDwork et al. 1988),
the quasi-synchronougVerissimo and Almeida, 1995),
and theimedasynchronousnodels(Cristian and Fetzer,
1998).

The failure detectormodel is basedon a distributed
oracle that gives (possibly incorrect) hints about the
behaviour of the component of tkgstemso to help to
achieve consensus.The partial synchronoussystem
model relaxeshe requisitesof synchronyfor processors
and/or for communicationsconsidering the casesin
which the bounds on messages deliveries dhertlock
drift of the processors exist bate unknownor they are
known but hold after an unknown time. In the quasi-
synchronousnodelthe propertiesthat definea synchro-
nous system are supposedhavea probability # 0 not
to hold.

The considerationthat existing fault-tolerantservices
for asynchronouslistributedsystemsaretimed is at the
basisof the timed asynchronousnodel definition. This
model is less generalthan the asynchronousone (it
assumes, for example, thalt the processefiaveaccess
to local hardwareclocksthat run within a linear enve-
lope of real-time)but it is not a practical restriction if
we considerthe high standardsf quality offeredby the
current technology.

The restof this paperis organisedas follow: after a
formal definition of synchronousand asynchronous
systems ana classificationof failure types (section2),
section 3 will define the consensugproblem and its
correlation withotherimportantproblemsin distributed
systemsand reports the Fischer, Lynch and Paterson
impossibility resultfor asynchronousystems,we will
introduce the above mentionetbdelsproposedo over-
come it. We will describe thiailure detectorsmodel and
the most important researchresults originated from a
seminal paper of Chandra and Toueg (1996) in sedtjon
the partially synchronousin section 5, the quast
synchronousn section6, and the timed asynchronous
system model in section Bection8 will concludethis
paperincluding remarkson the models consideredand
their comparison.

www.manaraa.com

2. MODEL CLASSIFICATION

Distributed systemmodelscan be classified according
to what they assumeabout synchrony, failure model,
and network topology.

Synchronous and asynchronous systems

We say a systemis synchronousvhenthe following
properties hold:

1. There is a knownipperboundon the messageleliv-
ery delays;

2. Thereis a known upper bound on the processing
speeds;

3. Thereis a known upper bound on local clock rate
drifts.

In this kind of systems,it is possibleto implement
failure detection mechanisms,e.g. using some time-
outs, and to achieve high degreesof reliability. The
drawbackis representedby the difficulty of ensuring
thesepropertiesin a large-scalesystemand for a long
time.

We saya systemis asynchronougor time-freg if we
adopt the definition given in (Cristian aketzer,1998))
when there is10 chanceto makeany temporalassump-
tion (the previousnentionedboundsdo not exist or are
unknown).The interesttowardsthis model can be ex-
plainedbecausef the high portability, robustnessand
generality of arapplicationsuitedfor it, andif we con-
sider as cause @fsynchronya variableor an unexpected
workload then the limitation of applicability of the
synchronousmodel emerges.Thesetwo models repre-
sent the extremes of a spectrum of possibilitieshiich
we caninsertall the currently available modelsfor the
implementation of distributed applications.

Failure models

A processor a communicationcomponentis said to
becorrectif it behavesaccordingto an agreedspecifica-
tion. If it is not the case,a failure is saidto occur and
the processor (or theommunicationcomponent)s said
to befaulty. A protocolis called m-resilientif it oper-
atescorrectly despiteup to m failures occurring during
execution.

Thereare severalwidely usedmodelsof processfail-
ure. They can be classified in terms of ‘severity’
(Hadzilacos and Toued993). Onemodelis lesssevere
than anotheroneif the faulty behaviourallowed by the
formeris a propersubsetof that allowed by the latter.
According to such a classificationthe first one is the
fail-silentor crashfailure model: in thisnodela process
fails by crashingwhen it stops its computationand
sendingany messageA more severetype of failure is
the omissionfailure model in which some messages
from faulty processesnay not reachtheir destinations.
Then we havehe "by value' failure model characterised
by the transmissionof a messagedifferent from the
specifiedone, and,in the end, the arbitrary (or Byzan-
tine) failure model, typical of a processoexhibiting an
absolutely arbitrary behaviour (sending, for example,
wrong and conflicting messagesor arbitrarily changing
its state). The possibility to have an authentication
mechanism(unforgeablesignaturesfor authenticating
messageslike error detecting codes (Peterson and
Weldon,1972)) permitsto distinguisharbitrary failures
from authenticated byzantirfailures.

When a precise temporgtid is availableanotherfail-
ure model is introduced:the timing (or performancg
failure, that is, missing the temporalboundsimposed
either on execution speeds, dock drift or on message
delivery (we can distinguish betweearly or late timing
failuresaccordingto the way theseboundsare not re-
spected).

By assumingthe existenceof a given failure model,
we define some“boundaries”’on the systembehaviour.
The validity of every assumption can be quantifigdan
associatedhypothesis coverage (Powell, 1992). For
example,if some error detection codes are used to
authenticate messages, we can assume thairngption
of data occurgluring a messagdransmission(a detected
corrupted messagecan be discardedand consideredas
never received). Thdependabilityestimationof applica-
tions based on thiassumptiorhasto takeinto account
the coverage of the hypothesis mdde. the probability
of the occurrence of a non-detectable error).

Network topology

Different assumptionscan be made on the network
topology: it can be eitheully or partially connectedit
can have point-to-point links or broadcastcapabilities,
the delivery of messages chavean arbitrary orderor a
FIFO order.

3. THE CONSENSUS PROBLEM

The consensuproblemariseseachtime severalproc-
esseshave to reacha common decision (dependingon
their initial inputs) despite failures (Fischer et al, 1985).

Let's considera systemof n (n = 2) processeghat
communicate via messages.When a consensusis
neededgachprocesgroposesits value and the correct
processedfollowing a deterministicprotocol involving
the receipt and sending ofessagedhaveto irreversibly
decide on a common value among the proposed ones.

In orderto solve the consensugroblem the protocol
hasto satisfy the following safetyand progressproper-
ties:

Termination: every correctprocesseventuallydecides
some valuegrogress;

Agreement: No two correct processes decidifferently
(safety;

Uniform integrity: every processdecidesat most
once gafety;

Uniform validity: if a processdecidesv, thenv was
proposed by some processifety.

Different forms of Consensuzsan be obtainedmodify-
ing the above properties strongerform of Consensus
can be defined imposing the Uniform Agreement
property, that is assuming that no twmcessegcorrect
or not) decide differently (Neiger afitbueg, 1990). This
is the so-called Uniform Consensus Problem.

In an asynchronousystemthe progressproperty re-
quires the eventual reaching of consensus(liveness
property),while in a synchronousystemthis property
requiresthe consensuso be reachedn a boundedtime
(timelinessproperty).

The concept otonsensusis a supportfor the consis-
tency of correctprocessess at the basis of the imple-

www.manaraa.com

mentationof responsivé systems,that combine fault-
tolerant systemsrequirementswith real-time systems
ones (Malek, 1995). Another fundamentalproblem of
computingsystemsthe SystemDiagnosisproblemis
closely relatedto Consensusthey both requirethe cor-
rect processepopulationto be handledin orderto be-
have in a specified antbnsistentway (the former using

a diagnosismechanismthe latter masking the faulty

processes)Barborak et al, 1993). The generality of

consensuscan be made evident by its close relation

(Fischer, 1983) withwo other problems:the Byzantine

Generals(Dolev, 1982; Lamport et al, 1982) and the

Interactive Consistencyproblem (Fischer and Lynch,

1982). In the former, a transmitter processsendsan

initial value tothe other processesthe receiverswhich

must agree on the valug the transmitter,in the latter,
each process sends a private value to every pteess,
and then eachcorrect processmust infer a vector on
values with an element for eachtbk processeginclud-
ing itself). The equivalencewith the Atomic Broadcast
problemis anotherevidenceof the importanceof the

consensus problem. Formalithe atomic broadcastis a

broadcast that satisfies the following conditions

(Hadzilacos and Toueg, 1993):

1. Validity: if a correctprocessbroadcast® message
m, then all correct processeseventually deliver m
(progress);

2. Agreement: if a correctprocesdeliversa message
m, then all correct processeseventually deliver m
(progress);

3. Uniform integrity: for any messagem, every
correctprocesdeliversm at most once,and only if

mwas previously broadcast by some process (safety).

4. Total order: if correctprocessep and g both de-
liver messagem andm’, thenp deliversm beforem’
iff q deliversm beforem’

A demonstratiorof the equivalencebetweenthe prob-
lem of Atomic Broadcastand the Consensuscan be
found in (Chandra and Toue$996). Equivalencemeans
that any solution to one problemcanbe usedto solve
the other problem and vice-versa(this is a processof
reductionof one problemto the other). The specifica-
tions and some implementationsof other broadcast
model can be found in (Hadzilacosand Toueg, 1993).
The close relationshipbetweensolutions to agreement
problems and broadcastcapabilities can be found in
applications like the Advanced Automation System
(Cristian et al., 1990), Amoeba (Tanenbaumet al.,
1990), Delta-4 (Powell, 1991), Horus (van Renesseet
al., 1996), Newtop (Macedoet al., 1993), Isis (Birman
and van Renesse, 1994), Transis (Amir et al., 1992).

The consensus problem is importéecausef a fun-
damental theoretical result based on the anabfsfault-
tolerant distributed computation: the impossibility
theoremof Fischer,Lynch and PatersonFLP) (Fischer
et al., 1985). This theoremstatesthat no deterministic
solution existsfor the consensugproblemin an asyn-
chronoussystemwhereevena single crashfailure may
occur. This result holds also.in_the presenceof a com-

1Responsivenesss defined as the probability of a
timely;and correct execution undegeen fault andload

pletely connectedand reliable communicationnetwork
where a sent message is eventusdlyeived.The core of
this resultis basedon the intrinsic impossibility to
distinguish, in an asynchronoussystem, a failed
(crashedprocessrom a merely slow one. The demon-
stration is obtainedby contradictionassumingthat such
a protocol exists and showingthe existenceof at least
one initial configuratiorfrom which an infinite compu-
tation is not enough to make the protocol ablehoose
one value (contradictingits assumedcorrectness).The
theoreticaland practical implications of this result are
very important. Whereasthe synchronousmodel is a
mere theoreticalabstraction,violated by real systems,
the FLP impossibility result tellthat the asynchronous
modelis too generalanddoesnot allow to provide any
useful property or result. This héel severalresearchers
to considerintermediatemodels betweenthesetwo ex-
tremes, either weakeningthe assumptionsof the syn-
chronousmodel, or constrainingthe asynchronousone.
In the following sectionswe will seethe most interest-
ing models proposed in this direction.

5. FAILURE DETECTORS

In order to overcome Fishet al's result, Chandraand
Toueg proposedto extend the asynchronoussystem
model introducing the concept of Unreliable Failure
Detector(Chandraand Toueg,1996). In their work, the
systemconsistsof a set of n processesevery pair of
processess connectedby a reliable communication
channel, and the processes can faittaghing A failure
detectorcan be conceivedas a distributed oracle that
gives (possibly incorrect) hints about which process
may have crashedso far. It is constitutedby several
moduleslocal to eachprocessperiodically consultedby
the correspondingprocess Eachmodule producesa list
of processesuspectedo be crashed,and this informa-
tion is used by processesanderto achievethe consen-
sus althoughit is importantto note that a suspected
processcontinuesto behaveaccordingto its specifica-
tion. The modulesareintrinsically unreliable: they can
make mistakes,so the lists dynamically changeduring
the computation (and it is possible for twomorelists
to be different at the same time).

The failure detectors can be classified accordirted
accuracy andcompleteness properties.The accuracy
property restricts the mistakesa failure detector can
make, while completenesgepresentsthe capacity of
suspectingan actually crashedprocess.More precisely,
we can define two completeness properties:

- Strong Completeness: eventually every crashed
processis permanentlysuspectecby every correct
process;

- Weak Completeness: eventually every crashed
processis permanentlysuspectedby some correct
process;

and four accuracy properties:

- Strong Accuracy: No process isuspectedeforeit
crashes;

- Weak Accuracy: some correct processis never
suspected,;

www.manaraa.com

- Eventual Strong Accuracy: thereis a time after
which correct processes amnet suspectedby any cor-
rect process;

- Eventual Weak Accuracy: thereis a time after
which some correct process is nesaspectedy any
correct process;

Combining theabovementionedpropertieswe obtain
the eight classesf failure detectorgdepictedin table 1
(Chandra and Toueg, 1996).

The classesof failure detectorsare not independent:
using a reductiomlgorithm (roughly speaking:an emu-
lator) it is possibleto demonstratethe existence of
equivalenceelations.More precisely,a reductionalgo-
rithm Tp _, p, is an algorithm that permits to soleay

problem that can be solved with D', using D in its
place. If an algorithm Tp _, pr exists, we write D=D'

andsaythat D' is reducibileto D (or that D' is weaker
than D). The reducibility attribute is a transitive rela-
tion, andif D=D' andD'=D we say that D and D' are
equivalent.If C=C' andC is not equivalentto C', then
C' is said tobe strictly weakerthan C (C>C’"). Chandra
and Toueg (1996) showedthe existenceof reduction
algorithms that transforrany given failure detectorthat
satisfies Weak Completeness, imtdailure detectorthat
satisfiesStrong CompletenessTheserelations,as well

as other reducibility relations betweenthe classesof

failure detectors, are described in figure 1.

Chandraand Toueg(1996) showedthe solvability of
the consensusproblem in an asynchronoussystem
where afailure detectoris given: if eventualaccuracyis
providedoP, ¢Q, ¢S, OW) a majority of correctproc-
esses is needed; if erovide perpetualaccuracy(classes
P, Q, S, W) then there are no limits on the tolerated
failures. In the same work twalgorithmsfor consensus
are described: one based on a Strong Faibaetectorand
the otheron an Eventually Strong Failure Detector.An
interesting result derivinfrom the equivalenceelations
between the failure detectors clasisethe solvability of
consensusvith an Eventually Weak failure detector
(with a majority of correct processesjChandraet al.,
1996). This result is important because, bdimgweak-
estfailure detectorthat canbe usedto solve consensus,
it states necessary asdfficient conditionsfor the solu-
tion of the problem.

Chandraand Toueg'swork is essentiallybasedon ab-
stract definitions of the model of failure detectors,
though this work triggereda lot of other studies:in
(Aguileraand Toueg, 1996) an integrationwith a non-
deterministic model ofhe systemis proposedwhile in
(Dolev et al., 1997}he attentionis focusedon systems
with omission failures. Guerraouiand Schiper (1996)
redefine the failure detector formalidior systemswhere
network partitions can occur. The recovery of crashed
processes is considered in (Hurfin et al, 1997; Oliveira
al., 1997; Aguilera et al., 1998). Lo and Hadzilacos
(1994) consideredhe use of failure detectorsin shared-
memory systems.

6. PARTIAL SYNCHRONOUS SYSTEM.

Analysing the FLPimpossibility result, thereappears
to he three different tvnes af asvnehronv:

Process asynchrony: a process may "go to sleefor
arbitrarily long finite amountsof time while other
processes continue to run;

Communication asynchrony: no a priori bounds
exist on message delivery time;

M essage order asynchrony: messagesanbe deliv-
eredin a different orderfrom the one in which they
were sent.

Investigating on the influences of the different typés
asynchrony,Dolev et al. (1987) found that it is not
necessaryo haveall the abovetypesof asynchronyto
obtain the impossibility result. More precisely, they
consideredfive critical parametersand the way their
attributescontributeto solve the consensusThey con-
sideredthe synchrony/asynchrongf processorq1) and
of communications(2), existence/absencef a corre-
spondenc®n the order messagesre sent and received
(3), the transmissionmechanism(point to point or
broadcast) (4), and the possibility/impossibility to
atomically executesendandreceive(5). Combining all
thesefive parametersa spaceof 32 possible system
modelscanbe obtained.Betweenthem, four caseshave
been identified in which-crash resilienprotocolsexist.
These casearenecessarnyn the sensethatit is enough
to change one parameter from favourablarttavourable
to lose the possibility of having a m-crash resilient
protocol f being 1 or 2). These minimal cases are:
1. synchronous processors and synchroremmsmunica-

tion;

2. synchronousprocessorsand synchronous message
order;

3. broadcast transmission and synchronous message
order;

4. synchronougommunication,broadcastransmission
and atomic send/receive.

In the caseof boundedmessagelelivery time, atomic
send/receive and point-to-poittansmissionwe can get
1-resiliencybut not 2: in a critical step, a processp
sendsa messagdo anotherprocessq, in orderto hide
this event it is necessary and sufficient thath p andq
fail. Figure 2 showsthe maximum resiliency for each
setting of the fiveparametergempty table entriesrepre-
sent the unsolvability of consensegenin the presence
of one crash failure).

All the aboveconsiderationgonstitutedthe basis for
the definition of the partially synchronous system
model (Dwork et al., 1988). This model is originated
relaxing the requisitef synchronyfor processorsand/or
for communicationsAccordingto this work, calling A
and® the upper bounds on message transmissioroand
relative clock speeds girocessorsespectivelya partial
synchrony can be caused by two conditions:

-the bounds exists but are not known;
-the boundsare known, but they hold after
some unknown time.

In the former case, the system is de fagtochronous,
so the impossibility result doesnot hold. The problem
is to manage the messages exchamigigout the knowl-
edgeof the real valuesof A and ®: using non correct
values fortheseboundswill obviously affectthe proto-
col correctnessor performance.ln the latter case an
instant of time, called Global Stabilisatidime (GST),

ic ctinnnend tn Aviet crnidhat tha hanindearavialid fram

www.manaraa.com

GST on.The samesituationscan be observedconsider-
ing only one boundt a time. For thesemodelstable 2
shows the maximum resiliency for different forms of
synchrony and types of failures. It is interesting to
observethat the usageof authenticationmechanisms
doesnot improve resiliency of systemswith partially
synchronous communications.

7. QUASI-SYNCHRONISM

The respect oéll the timing constraintds mandatory
when life-critical applicationsare considered,however,
thereare otherreal-timeapplicationswhere, despitethe
need for dependability,it is acceptableto eventually
miss some of them (assumingto achieve the most
important ones). This is the consideration atlibsisof
the definition of the quasi-synchronous model pro-
posed by Verissimo and Almeida (1996b).

It should be observedthat, accordingto the authors’
approach the systemsin which theseapplicationsare
built are not soft real-timein the strict senseof the
word: they are designedon the assumptionof a non
negligible probability of timingfailures occurrencesfor
this reasonadequatdiming fault-tolerancemeasuresre
needed.

Using Almeida and Verissimo wording, a systemis
synchronous if there are

P1. bounded and known processing speeds;

P2. bounded and known message delivery delays;

P3. bounded and known local clock rate drift;

P4. bounded and known load patterns;

P5. bounded and known difference among local clocks.

A system is quasi-synchronous if

D1. it can be defined by properties;

D2. There is at least one bound where theseksown
probability (# 0) that the bound assumptiondoes
not hold (this probability is called assumptionun-
coveragg

D3. any property can be defingd termsof a seriesof
pairs (bound, assumption uncoverage).

A Quasi-Synchronousystemcan be conceivedas a
synchronoussystemin which the absoluteboundson
messages transmission delalggal clock drift ratesand
processexecutiontimes are so far away from those
observedduring the normal operative mode that it is
more convenientto use different values, even if the
coverageof such assumptionsis not equal to one
(Powell, 1992). This model allows to catch both the
situationin which the boundsdo not exist and that in
which the bounds exist, but someadr of them aretoo
far from the normal case,so it is preferableto use
shorter artificial bounds, with an uncoverggebability.
In (Almeida and Verissimo, 1998) the integrationof a
timing failure detector(implementableusing a dedicated
small bandwidthsynchronoushannel,or using highest
priority messages)with an hierarchical structure for
group managemenis usedto efficiently handletiming
failuresandto obtain a real-timegroup communication
insasQuasi-Synchronousystem=-A=more detailed de-
scription ofthe abovementionedconceptscan be found
in (Almeida and Verissimo, 1995; Almeida and Veris-
simo, 1996b). An' interestingapplication of this archi-

time data-basewherethe consistencyof replicashasto

be ensured without influencingmelinessand vice-versa
(Almeida and Verissimo, 1996a).The conjunctionof a
failure detectionservicewith the communicationproto-

cols canbe relatedto the work doneby the ISIS group
to solve the consensugproblemin asynchronoussys-
tems (Ricciardi and Birman, 1991).

8. TIMED ASYNCHRONOUS SYSTEM

At the basisof the timed asynchronousnodel defini-
tion there is the consideratidhat existing fault-tolerant
services forasynchronouslistributedsystemsare timed:
the specificationof the servicesnot only describesthe
states transitions arttie outputsin responseo invoca-
tions of operations,but also the time interval within
which thesetransitionshave to complete(Cristian and
Fetzer, 1998).

The timed asynchronous systenodelis characterised
by a setof assumptionn the behaviourof processes,
of communications and of hardware clocks:

1. all the services arimed (the temporalcharacteristics
of the events arspecified),so it is possibleto asso-
ciate some time-outs whose expiration producesa
performance failure

2. communicatiorbetweenprocessess obtainedvia an
unreliable datagram service wittmission and/orper-
formance failure semantics;

3. processeshave crash/performancdailure semantics
(Cristian, 1991);

4. all processefiaveaccessto private hardwareclocks
that run within a linear envelope of real-time;

5. no bound exists on the rate of communicationand
process failures.

As we cansee,the timed asynchronousystemmodel
is asynchronous in thgensethat it doesnot requirethe
existence of upper bounds for message transmisaiehs
scheduling delays. However, the acces$ocal hardware
clocks and the definition dfme-outsallow us to define
the performance failure as that failure which oceungn
an experiencedlelayis greaterthanthe associatedime-
out delay. It could be argued that the timmeddelis less
generalthan the asynchronousne, but this is not true
from a practical point of view. In fact, eachtime an
higher level of abstraction depends on a serviaeaites
the serviceto become'de facto" timed. Also the pres-
ence of clocks is not a practical restrictionvi consider
that the currently technology makes available high-
precisionquartz clocks. Differently from the asynchro-
nous model, the timed model allows to implement
fundamentakerviceslike clock synchronisationmem-
bership, consensus,election and atomic broadcast
(Cristian, 1989; Cristian and Schmuck, 1995; Fetrer
Cristian, 1995; Cristian, 1996).

Let's analysemorein detail the model, starting from
the support for the communication.

The datagram service

The following assumptions hold:

- there are no assumptionson the physical network
topology;

- messagesre transmittedeither via unicastor broad-
cast;

www.manaraa.com

- thereis no upperboundon the messagdransmission
delay;

- it permits thedefinition of a time-out on the message
transmission (one-way time-out deldy whosevalue
influences the failures rate and, consequettly,sys-
tem stability;

- it transmitsthe messagesvith a time proportionalto
their dimension;

- it has a crash/omission failusemanticqthe possibil-
ity of message corruption is negligible).

The one-way time-outlelay associatedo the commu-
nication servicespermits to say that a messagds re-
ceivedin a timely mannerif its transmissiondelay is
not greater than.

The processes

All the processe$iaveaccesdo a private stablestor-
ageso it is possible,for them, to be recoveredafter a
crashoccurred.In particular,a processcanbe in one of
the following three statesp, crashed andrecovering A
process is in therashedstate when a stopxecutingits
code and has lost all its previous state. It ithmrecov-
ering statewhen executedts state ‘initialisation code’,
i.e. afterits creation,or in the restartingphaseafter a
crash occurred. Whenéixecutests 'standardtode,it is
in theup state.

The non-crashegbrocesseshangetheir statein corre-
spondence of triggering events like time-outsrmassage
delivery. The time betweenthe occurrenceof an event
andthe momentthe processfinishes the processingof
this eventis called processschedulingdelay For each
processp atime-outo for schedulingdelaysis given.
When o expiresthe processis said to have suffereda
performance failure

Local Clocks

Processes have accesatlocal hardwareclock whose
drift rateis boundedby a calibration mechanism.The
local clocks are subjectedo crashesandthis eventpro-
ducesa crashin the processeghat rely on them (the
oppositeis not true: a processcrashdoesnot affect its
local clock).

The Progress Assumptions

The timedasynchronousystemmaodelis extendedby
the so-calledprogressassumptionsin short, the pro-
gress assumptionsare introduced to characterisethe
synchronousbehaviourexhibited by a system, i.e. to
model the additionalsynchronisminto the timed asyn-
chronoussystemmodel (e.g. progressassumptionscan
be usedto characterisehe behaviourof distributed sys-
tems basedon LANs which alternatesbetween long
stability periods and comparatively short instability
intervals). Progress assumptions ¢erexpressedn the
following way: infinitely often a majority of processes
will be stable for a boundegimountof time. In orderto
formally definethe progressassumptionsve needsome
definitions. A procesg istimelyin aninterval[s, t], if
it is non-crashea@ndit doesnot suffer any performance
failure in [s, t]. Two processesire connectedn [s, t] if
they are timely duringg] t] and eachmessagexchanged
between them ins[t-0] is _receivedin_a timely manner,
i.e. the messagéransmissiondelaysof connectedproc-
esses are at mosdt A stablemajority in an interval [s
t] is composed by a majority of up, timedyd pair-wise

Arannnrtadnrnrncenan et A nrarnccic mainrihg

stablewhen it belongs to a stable majori. systemis
said majority-stableduring an interval if there exists a
stablemajority during that interval, otherwiseit is said
unstablein that interval.

In the specificationsof the protocolsfor timed asyn-
chronous system sonstability predicatesare definedin
orderto verify the favourableconditionsof the system
(i.e. its synchronousehaviour).Herewe will consider
thealways eventually majority-stabpgedicate:

1. after eachunstability period, a systemeventually
becomes majority-stable for EtastD clock time units,
where D is an a priori given constant;

2. eachprocessalways eventually becomesmajority-
stable for at least D clock-time units or it crashes.

In (Fetzerand Cristian, 1995), a majority stability
predicateis definedsuchthat, if the systemis majority
stable for sufficiently long time, solution to the leader
electionand consensusare deterministicallyimplemen-
table. It shouldbe notedthat the terminationconditions
for asynchronousystemsrequirean algorithmto com-
plete in a finite numbeof steps,while for synchronous
systemsthis condition is time-bounded,.e. the algo-
rithm has tocompletein a boundedamountof time. In
timed asynchronousystemsthe termination conditions
are conditionally-timed:in an always eventually major-
ity stable systemif a processmakespartof a majority
of timely processesn an interval of time, then, each
operation started at tHeeginningof that interval hasto
completewithin it. Supposingto have an eventually
majority system,the protocol describedin (Fetzerand
Cristian, 1995) solvesthe consensugproblem using a
rotating leadership service which gives each timely
processhe chanceto be leaderfor a limited amount of
time before it is demoted arite leaderships passecn
to another process.

In this way, even in the case tleadersuffersa crash,
if the system igmajority stable,anotherprocesscanact
asa leaderin a boundedamountof time. This protocol
solvesthe consensugproblem despitethe failures and
recoveriesthat may affect the processeghat do not
belong to astablemajority. The solvability of the con-
sensusproblem in the timed asynchronoussystem
model is strictly relatedo the possibility of associating
aninformation to the time: it allows the timed asyn-
chronous system model tee the supportfor the defini-
tion of the so called Fail-Awareness (Fetzerand Cris-
tian, 1996b; Fetzer and Cristian, 1997), tisata design
concept, based on thenslationof performancdailures
in exception occurrences, for weakening $pecification
of a synchronous service S to a new specificationsBsS,
that it becomesimplementablein timed asynchronous
systems.An interestingapplicationof the timed asyn-
chronousmodel can be found in (Essame’,1998; Es-
same’et al. 1999), whereit is appliedto the definition
of a protocol (called PADRHBpr the managementf an
asymmetric duplex redundancy ifdly automatedrain
control system.

9. A COMPARISON OF MODELS

All the modelswe consideredried to overcomethe
FLP impossibility result strengtheningthe asynchro-

www.manaraa.com

amountof "synchrony"to the systemin orderto allow
the solvability of the consensugproblem. Obviously,
there are several differencesbetween all the models,
because the assumptions they rely upon are different.

A first comparisoncan be madebetweenthe partially
synchronoussystemand the timed asynchronoussys-
tem.

As we saw before, the former modelsumeghe exis-
tenceof a boundon processospeedsand on the clock
drift rate with a coverage equal to 1. On timmtrary,the
timed asynchronoussystem model only assumesa
bound on clock drift rate (with a coverage equal@and
makes no assumptions on load patterns@nchessages
transmissiongdelays. The timed asynchronoussystem
model has some points in commonwith the partially
synchronoussystem model: the Global Stabilisation
Time of the partially synchronoussystem model re-
minds the concept aftability of the timedasynchronous
system, but, while the Glob&tabilisationrequiresthat
the system isiot affectedby any (timing or crash)fail-
ure aftera certaininstant, the stability of a timed asyn-
chronoussystemis valid only for boundedtime inter-
vals. Moreover,it is interestingto comparethe partial
synchronysystemmodelswith the notion of an unreli-
able failure detector For every partial synchronymodel
we consideredijt is easyto implementan eventualper-
fect failure detector (a failure detector that satis§igeng
completenesand eventualstrong accuracy)In fact one
could implementsuch a failure detectorwith an even
weakermodel of partial synchrony:onein which the
boundson messagdransmissiondelaysand on process
speeds exist, but they are riwtown andthey hold only
after someunknowntime. More difficult is to compare
the failuredetectoramodel with the timed asynchronous
systemone. In (Fetzerand Cristian, 1996a)the impos-
sibility to implement a perfect failure detectorartimed
asynchronousystemhasbeenproved. The main differ-
ence between the two models is in the philosophthe
designof the system. Failure detectorshide to higher
abstractionlevels all the aspectsrelatedto the time of
the fault-tolerant distributed computation. This can
constitutea problemif the abstractionlevels are more
thantwo. In sucha situationall the time-outsare used
in each level becauselevel that dependon anotherone
(Cristian, 1991) has to be altie detectits failures. For
this reasonthe meaningof time-outs changein corre-
spondencef the levels they are associatedo (usually
the higher is the level, the greater is the time-outtaad
more severeis its violation). Let's considernow the
differencesbetweenthe Partial Synchronousand the
Quasi-Synchronousnodel: in the latter model it is
necessary talefinean a priori given boundfor message
delay (although the bound does not hold watbbability
1), while in the former, this boundis not known or it
holds after an unknowninstant. The last comparisonis
between the Timed Asynchronous and the Quasi-
Synchronousmodel. Thesetwo models have several
points in common. First of athey are both basedon a
carefulobservationof existing systems.They both are
concernedn the realisationof a supportfor the devel-
opmentof real-timeapplicationson not fully synchro-
nous environments. Moreovehey both allow to build

annlicatinne with a fail eafAa chiitdaniat A firet Alan~na

the degree of synchrony of the Quasi-Synchronous
model seems higher thahe degreeof synchronyof the
Timed Asynchronousone, but we have to remind how
the latter dependon the definition of the progressas-
sumptions. Though, as statedin (Almeida and Veris-
simo, 1998), “the Quasi-Synchronousnodel provides
more flexibility for system reconfiguration because,
thanks to the timely control information providbg the
Timing Failure Detector Service,an agreementan be
reachedbefore making a decision about the way that
reconfiguration should be done".

REFERENCES

Aguilera, M. K., etal. (1998). “Failure Detectionand
Consensus in the Crash-Recovery Modetoc. of 12th
Int. Symp. on Distributed Computingndros, Greece.

Aguilera, M. K. and S. Toueg (1996). “Randomiza-
tion and FailureDetection:a Hybrid Approachto Solve
Consensus”.Proc of 10th Int. Workshop on Distr.
Algorithms Bologna, Italy, pp. 29-39.

Almeida, C. andP. Verissimo (1995). “An Adaptive
Real-Time Group CommunicationProtocol”. Proc. of
First IEEE Workshopon Factory CommunicationSys-
tems Leysin, Switzerland.

Almeida, C. and P. Verissimo (1996a).“The Quasi-
SynchronousApproachto Distributed Real-Time Data-
Bases”, INESC tech rep RT/02-96. Lishoa, Portugal.

Almeida, C. and P. Verissim@996b).“Timing Fail-
ure Detectionand Real-time Group Communicationin
Quasi-Synchronousystems”. Proc. of 8th Euromicro
Workshop on Real-Time System®#\quila, Italy.

Almeida, C. andP. Verissimo(1998).“Using Light-
Weight Groupsto handle Timing Failuresin Quasi-
Synchronousystems”.Proc. of 19th IEEE Real-Time
System Symposiuyrvladrid, Spain.

Amir, Y., etal. (1992). “Transis: a Communication
Sub-systenfor High Availability”. Proc. of 22nd An-
nual Int. Symp. on Fault-TolerantComputing pp. 76-
84.

Barborak, M., et al(1993).“The Consensug$’roblem
in Fault-TolerantComputing.” ACM Computing Sur-
veysVol. 25, pp. 171-220.

Birman, K. P. andR. van Renessg1994). “Reliable
Distributed Computing with the Isis Toolkit”. IEEE
Computer Society Press.

Chandra, T. et al. (1996). “The Weakest FailDetec-
tor for Solving Consensus.Journal of the ACM, Vol.
43, pp. 685-722.

Chandra, TandS. Toueg(1996). “Unreliable Failure
Detectorsfor Reliable Distributed Systems.”Journal of
the ACM,Vol. 43(2), pp. 225-267.

Cristian, F. (1989). “Probabilistic ClocBynchronisa-
tion.” Distributed Computingyol. 3, pp. 146-158.

Cristian, F. (1991). “Understanding Fault-toler®is-
tributed System.Comm. of ACMWo0l.34, pp.56-78.

Cristian, F. (1996). “Group, Majority, and Strict
Agreementin Timed AsynchronousDistributed Sys-
tems”.Proc. of 26thint. Symposiumon Fault-Tolerant
Computing Sendai, Japan.

Cristian, F. et al. (1990). “Faut-Tolerancan the Ad-
vanced Automation SystemProc of 20th Int.Conf. on

www.manaraa.com

Cristian, F. andC. Fetzer(1998).“The Timed Asyn-
chronous Distributed System ModeProc. of 28th Int.
Symp. On Fault-TolerantComputing (FTCS-28), Mu-
nich, Germany. pp. 140-149.

Cristian, F. and F. Schmuck (1995). “Agreeing on
Processor-Groupembershipin AsynchronougDistrib-
uted Systems”, UCSD technical report.

Dolev, D. (1982). “The Byzantine Generals Strike
Again.” Journal of Algorithmsyol. 3, pp. 14-30.

Dolev, D., et al. (1987).“On the Minimal Synchro-
nism Neededor Distributed Consensus.Journal of the
ACM, Vol. 34, pp. 77-97.

Dolev, D. et al. (1997).“Failure Detectorsin Omis-
sion Failure Environments”. 16th ACM Symp. on
Principles of Distributed Computing (Short Paper).

Dwork, C., etal. (1988).“Consensusn the Presence
of Partial Synchrony.J. of ACM,Vol.35,pp. 288-323.

Essame’, D. (1998).Fault Tolerancein Critical Sys-
tems: Application to Automatic Subway Control”.
Tolouse, Doctoral thesis, LAAS-CNRS, Tolouse.

Essame’'D., et al. (1999).“PADRE: A Protocol for
Asymmetric Duplex Redundancy”.Proc, of 7th Int.
Working Conf. On DependableComputing for Critical
Applications San Jose, CA. pp. 213-232.

Fetzer, C. and F. Cristiaf1995). “On the Possibility
of Consensusn AsynchronousSystems”. Pacific Rim
Int. Symp. on Fault-tolerant Syst., Newport Beach CA.

Fetzer, C. and F. Cristian (1996&Fail-awareFailure
Detectors”.Proc. of 15th Symposiumon Reliable Dis-
tributed SystemdNiagara on the Lake, Canada.

Fetzer, C. and FCristian (1996b)."“Fail-awarenes$n
Timed Asynchronous Systems”, T.Rep.CS95-45,
UCSD

Fetzer, C. and F. Cristian (1997QA Fail-awareData-
gram Service”. 2nd Annual Workshopon Fault-tolerant
Parallel and Distributed Systems, Geneva, Switzerland.

Fischer,M., et al. (1985).“Impossibility of Distrib-
uted Consensuswith One Faulty Process.”Journal of
ACM, Vol. 32, pp. 374-382.

Fischer,M. J. (1983). “The ConsensusProblem in
Unreliable Distributed Systems (Brief Survey)”. Inter-
national Conferenceon Foundationsof Computations
Theory. Borgholm, Sweden. pp. 127-140.

Fischer,M. J. andN. A. Lynch (1982).“A Lower
Boundon the Time to AssurelnteractiveConsistency.”
Information Processing Letter¥ol. 14, pp. 183-186.

Guerraoui, R. and A. Schiper (1996). ““Gamma-
Accurate” Failure Detectors”. Proc. of 10th Intern.
Workshopon Distr. Algorithms Bologna, Italy. pp.
269-286.

FIGURES AND TABLES

Table 1 - Failure Detectors Classes

Accuracy
Com- [[Strong Weak | Eventual Eventual
plete- Strong W eak
ness
Strong|| Perfecq Strong| Eventually | eventually
P s | Perfect OP Strong 9S
W eak Q Weak 0Q Eventually

Hadzilacos,V. and S. Toueg (1993). “Fault-tolerant
Broadcasts anRelatedProblems”.Distributed Systems
S. J. Mullender. Reading, Addison-Wesley. pp. 97-145.

Hurfin, M., et al. (1997). “Consensusn Asynchro-
nous Systems whefferocessesan Crashand Recover”,
IRISA Internal report PI-1144.

Lamport,L., etal. (1982). “The ByzantyneGenerals
Problem.” ACM Transactionson Programming Lan-
guages and Systeméol. 4, pp. 382-401.

Lo, W. K. andV. Hadzilacos(1994). “Using Failure
Detectors tdSolve Consensusn AsynchronousShared-
Memory Systems”Proc of 8th International Workshop
on Distributed Algorithmspp. 280-295.

Macedo, R. A.et al. (1993).“Newtop: a Total Order
Multicast Protocol Using Causal Blocks”, BROAD-
CAST Project Technical Report n.10

Malek, M. (1995). “Omniscence,ConsensusAuton-
omy: ThreeTempting Roadsto Responsiveness’Proc
of 14th IEEE Symposiumon Reliable Distributed Sys-
tems Bad Neuenahr, Germany. pp. 12-14.

Neiger,G. and S. Toueg (1990). “Automatically In-
creasingthe Fault-toleranceof Distributed Algorithms.”
Journal of Algorithmsyol. 11, pp. 374-419.

Oliveira, R., et al. (1997).“Consensusn the Crash-
Recover Model”, EPFL, Dept. d'Informatique, Tech.
rep. 97-239, Lousanne (Switzerland).

Peterson, W. and E. Weld¢h972). “Error Correction
Codes”. MIT Press, Massachusetts.

Powell, D. (1991). “Delta-4: A Generic Architecture
for Dependable Distributed Computing” New York.

Powell, D. (1992). “Failure Mode Assumptionsand
Assumption Coverage”.Proc. of 22nd Int. Conf. on
Fault-Tolerant Computing Boston, pp. 386-395.

Ricciardi, A. M. andK. P. Birman (1991). “Using
ProcessGroups to Implement Failure Detection in
Asynchronous Environments”, Tech. Rep., Cornell
University, Dep. of Computer Science.

TanenbaumA. S., et al. (1990). “Experienceswith
the AmoebaDistributed OperatingSystem.” Communi-
cation of the ACMVYol. 33, pp. 46-63.

Turek, J. andD. Shashg1992).“The many Facesof
Consensusin Distributed Systems.” [IEEE Computer
Vol. 25, pp. 8-17.

Van RenesseR., et al. (1996). “Horus: a Flexible
Group CommunicationSystem.” Comm. of the ACM,
Vol. 39.

Verissimo, P. and C. Almeida (1995). “Quasi-
Synchronism:a Step Away from the Traditional Fault-
Tolerant Real-Time System Models.” IEEE TCOS
Bulletin Vol. 7, pp. 35-39.

www.manaraa.com

Failure

Detector

Fig. 1 Relations between
classes (Chandra and Toueg, 1996)
,,,,, &Q
| |
P
| _ 4 QP
| | | |
| | | |
\ \
"o
| |
S S

C—>»D: Cis drictly wealer thanD
C— D: Ciseguvalentto D

Table 2. Smallest number of processors Nmjn for which a t-resilient Consensus

(Dwork et al. 1988) .

protocol exists

System Model
Partially synchr. | Partially synchr| Partially synchr. proc
Syn- | Asyin- | communication andg communication| essors and synchr.
Failure type chronougychronouq synchr. processor{ and processorg communication
Crash t P 2t+1 2t+1 t+1
Omission t I 2t+1 2t+1 [2t, 2t + 1]
Byzantine
(with authentication) t 0 gt+1 gt+1 2t+1
Byzantine
(without authentication) || 3t+1 00 gt+1 gt+1 gt+1
Message Order Message Or der
_ Asyndh. Synch.) Asynch. Synd.
s —— S T S
S 3 > S >
’n) 2 5 /) 2 5
S o g o
é B I W
n n n
S 5 9 5
& & 78 o 8
{ (n n n n = >
G DW S @ _[n [l ™) Jg
s 5
n n n n
U "z \ L
point- *———— point- pant- ‘. —— point-
to-point Broadcast to-pant to-poirt Broaicast to-point

Transmission
b) Atomic serd ard reeive

Trangmisson
a) Separated send and recave

Fig. 2 Maximum crash resiliencies for consensus protocols

www.manaraa.com

